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Weibull master curves and fracture
toughness testing
Part Il Master curves for the evaluation of dynamic

Charpy impact tests

M. LAMBRIGGER
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Im Struppen 12, CH 8048 Ziirich, Switzerland

The existence of specimen-size-independent quasi-static Weibull master curves for
macroscopically homogeneous solids characterizing strength and failure of both purely
brittle materials and rather tough materials, which undergo an amount of stable crack
growth prior to failure, has already been proved in earlier publications. In this paper, the
concept of Weibull master curves is extended to the case of dynamic testing conditions,
being typical for Charpy impact tests performed in the ductile-to-brittle transition
temperature-range of ferritic-martensitic steels. Dynamic Weibull master curves can be
constructed, if the stress-distributions, which are built up in the process zone of the
specimens during the Charpy impact tests, can be described with a dynamic
quasi-equilibrium approach. In this case, the dynamic Weibull master curves can be related
to the quasi-static Weibull master curves with the help of the toughening exponent z,
characterizing the rate of toughness increase with increasing crack length. Characteristic
magnitudes, being most convenient to estimate the capacity of the tested materials to
undergo stable crack growth, microcracking and crack-tip shielding prior to rupture, can be
derived as well from dynamic Weibull master curves as from quasi-static Weibull master
curves. © 1999 Kluwer Academic Publishers

Nomenclature distribution function
Upend pendulum velocity at begin of o, failure stress corresponding to
impact the cumulative failure
d, B constants probability z
C crack length Ki failure stress intensity
r numerical constant T toughening exponent
characterizing the geometry of R work necessary for
the localized loading incremental crack extension
o applied failure stress or normal T fracture resistance
stress built up in the process E Young’s modulus
zone P pendulum force acting on the
Omax maximum normal stress Charpy specimen
P(o) guasi-static, three-parameter, F localized load
cumulative Weibull failure P’ reaction line-force built up at
probability distribution the notch-tip of the Charpy
function specimens during testing
00 normalizing factor in Ka separated stress intensity
dimensions of stress factor due to uniform applied
o threshold stress, below which stress
no failure occurs Ky separated stress intensity
Oin failure stress at the inflexion factor due to localized,
point of P(o) residual stress field
o mean failure stress m dynamic Weibull modulus
m Weibull modulus Prax maximum impact line-force
z distinct value of the built up during the Charpy
cumulative failure probability impact test
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dynamic, two-parameter,
cumulative Weibull failure
probability distribution
function

maximum reaction line-force
at the notch-tip arising during
the Charpy impact test
normalizing factor in
dimensions of load

threshold load-value
maximum impact line-force
corresponding to the
cumulative failure
probability z

maximum impact line-force at
the inflexion point of the
two-parameter, cumulative
Weibull failure probability
distribution functionP (Pmax)
mean-value of the maximum
impact line force

values ofs, F andc
corresponding to the onset of
unstable crack propagation
three different types of
guasi-static, theoretical
Weibull master curves

three different types of
guasi-static, experimental
Weibull master curves
different types of scaled failure
stresses

values of the cross-over points
formed by the corresponding
experimental and theoretical
master curves

step function being equal to
zero fore(z) < ex(z) and equal
to one fore(z) > e (2)
deviation parameters

derived from the step
functionH[e(z)] and

from the quasi-static

Weibull master curves
M[e(z), m] and

M exple(z), m]

three different types of
dynamic, theoretical Weibull
master curves

three different types of
dynamic, experimental
Weibull master curves
different types of scaled
maximum impact line-forces
values of the cross-over points
formed by the corresponding
experimental and theoretical
master curves

step function being equal to
one for€/(z) < €,(z) and equal
to zero fore/(z) > €,(2)
deviation parameters

derived from the step

F exp IM'[€(2)],
F exp 2W'[€(2)],
dxwm, dy; andd yx

function H'[€/(2)] and
from the dynamic
Weibull master curves
M[€(2), m] and

M exple'(z), m']

1. Introduction

9-12 wt % Cr ferritic-martensitic steels with fine car-
bide structures are considered to be promising ap-
plicants for structural materials in fusion technology,
mainly because of their high strength, low thermal di-
latation and high resistance to void swelling [1]. How-
ever, they are sensitive to irradiation embrittlement
causing a shift of the ductile-to-brittle transition tem-
perature (DBTT) to higher values [2]. The DBTT is
generally studied with the help of instrumented Charpy
impact tests [3], which are performed at distinct testing-
temperatures. These tests provide the Charpy energies
(absorbed impact energies) of the specimens, being
evaluated by integration of the measured load versus
time diagrams [3]. Charpy energy versus temperature
diagrams are generally used in order to characterize
the ductile-to-brittle transition of ferritic-martensitic
steels.

In this paper, the scatter of the maximum pendulum
force for a definite material at a fixed testing-tempe-
rature in the DBTT-range, is studied by performing se-
ries of instrumented Charpy impacttests. Therefore, the
quasi-static Weibull model has been modified into a dy-
namic Weibull model, which is applicable to uniaxial,
localized dynamic loading conditions. The quasi-static
and the dynamic Weibull models enable qualifica-
tion and quantification of the amount of microcrack-
nucleation, microcrack-propagation, crack-tip shield-
ing and stable crack growth having been undergone by
the tested samples prior to rupture, by simply testing 20
to 30 specimens under equal testing-conditions. Nucle-
ation and stable growth of (micro-)cracks are supposed
to be important parameters in estimating DBTT-shifts
due to irradiation embrittlement.

In part 1 and 2 of this series of papers [4, 5], the
specimen-size-independent, three-parameter cumula-
tive failure probability distribution functioP(c') has
been shown as significant, if an uniaxial tensile stress
o is applied to the investigated specimens under quasi-
static loading conditions, as for example in tensile or
bend tests. Specimen-size-independent Weibull master
curves represent scaled cumulative failure probability
distribution functions. The general type of Weibull mas-
ter curvesM[e(z), m] is obtained by scaling (o) with
any stressy, corresponding to a distinct, cumulative
failure probabilityz. As a result, the following trans-
formations can be performed [4],

Z _Gr)m}; o>o (1)

oo

Plc)=1- exp{—(
Plog) =z 2)

wherebym denotes the Weibull modulus, the thresh-
old failure stress underneatR(c) is zero andop a



normalizing factor which has dimensions of stress. IfFiM1[e(z)] and F exp IM[e(z)] denote the areas,

the variable transformation which are situated below the cross-over p@gnz) of
M[e(2), m] and M exple(z), m], whereas the opposite
e(z) = 0 0t A3) is valid for Fi M 2[e(2)] and F exp 2V[e&(2)].
07 — O FiM1[e(z)], FiM2[e(2)], FexpIM[e(z)] and

F exp 2M[e(z)] are significant deviation parameters,
has been accomplished, the quasi-static Weibull mastefistinguishing the toughening potential of the inves-
curvesM([e(z), m] are obtained [4]: tigated material. They are used to define the specimen-

size-independent, material-specific quotienisgiven

P(o) = M[e(d.m =1- (12" (4) by

Two further types of quasi-static Weibull master curves _ FiM1[e(2)]/FiM2[e(2)]
I(x,m) and K(y, m), repesenting special cases of M= F exp IM[e(2)]/F exp 2Vi[e(2)]
M[e(z), m], are calculated by scalin®(c) with the

mathematically relevant stress-value of the correspondFhe y -values of the special master curdés, m) and
ing inflexion pointoi, or by scalingP(c) with the  K(y, m), denoted byy, and yxx, can be calculated as
physically highly significant mean stress= [, odP.  follows, wherebyz;, andz have been defined in detail
I (x, m) exists form <0 andm > 1, whereaK (y, m) in Ref. [5]:

always exists fom < —1 andm > 0. The scaled failure

stressx andy are defined as follows [4]: FiM1[e(zin)]/FiM2[e(zin)]

(9)

X = Foxp Me(zm)]/F exp Miezm)] 0
g IOt 5)
Oin — 07 _ FiM1[e@)]/FiM2[e(?)] 1)
oo o = FoxpIMe@]/F oxpMe@]
y = —
o —o;

The static quotientgm, x1 and xx being defined for

Thus, the special master curve&, m) and K (y, m) positive Weibull modulim are material-specific in a
can be written as follows: first approach [5, 7]xm, x1 and x are positive and
finite form > 1. On the other sidegy, is not defined for
0<m<1, althoughym and xk are also positive and

1-m
( )Xm} (7)  finiteforO<m<1.

Ple)=1(x,m)=1— exp[

m
Plo)=K(y,m=1- exp:—[l“ <1+ 1)} ym} 2. Dynamic model for the evaluation of
m instrumented Charpy impact tests
(8) In this section a dynamic model for the evaluation of
instrumented Charpy impact tests is presented. It can
wherebyI'(1 + %) represents the complete Gamma-always be applied to materials, whose toughness and
function [4]. acoustic wave speeds are similar to those of ferritic
In part 2 of this series of papers [5], it has been dis-steels being tested below or close to the DBTT.

played that quasi-static experimental Weibull master First, a dynamic quasi-equilibrium is defined. In
curves of materials undergoing an amount of stabléehe case of Charpy impact tests, being performed
crack growth prior to failure, facilitate the character- with ferritic-martensitic steels in the DBTT-range, the
ization of the toughening mechanisms operating in thalynamic quasi-equilibriumis assumedto be achievedin
investigated materials. The quasi-static experimentathe process zone of the investigated specimens prior to
Weibull master curves are derived from uniaxial ten-brittle failure, if the specimens overcome a shortinertia-
sile or bend tests [5]. Furthermore, it has been showmffected load stage. The dynamic quasi-equilibrium ap-
that the quasi-static experimental Weibull master curveproach (DQEA) ensures, that the foreef the pendu-
M exple(z), m], | exp, m) and K exp(y, m) can be lum, which is acting on the specimen during a Charpy
constructed with the help of special numerical or graphimpact test, is nearly a line force, which is steadily
ical techniques, by simply calculating the Weibull mod- increasing with time prior to failure. The pendulum
ulus m from the uppes-range of the experimental, is also assumed to remain in contact with the speci-
cumulative failure stress distributio®o;) [4—8]. Be-  men after having passed the short inertia-affected load
sides,m > 0 has been verified under quasi-static con-stage. Moreover, it is presumed, that during the dy-
ditions. In order to evaluate experimental failure datanamic quasi-equilibrium stage a reduced reaction line-
(01, P(0y)), a step functiorH [e(2)] being equal to zero  force P’, being proportional tdP, is built up opposite
for scaled failure stresse§z) < e;(z) and equal to one to the contact zone along the notch-tip. is mainly
for e(2) > e.(2), has been defined [5]. The two areasthe result of longitudinal waves, originating in the im-
formed betweerH|[e(z)] and M[e(z), m] are denoted pact contact zone and expanding straight-forward along
by FiM1[e(z)] and FiM2[e(2)]. F exp IM[e(z)] and  the central bar-channel parallel to the mid-plane down
F exp 2M[e(2)] represent the two corresponding ar- to the notch-tip, where they are reflected (see Fig. 1).
eas formed betweeM[e(z), m] and M exple(z), m].  According to the DQEA the central bar-channel, which
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mid-plane dulum velocities (1 m/s: vpeng< 5 M/s) and common
specimen-geometries are chosen, and if the DQEA can
be applied. Thus, the process zones may be formed, in
P _ o this case, by localized, elasto-plastic deformation under
impoct contact zone  gynamic, partially adiabatic conditions [9]. The arising
residual stress field, due to the process zone ahead of
the notch-tip, is crucial for the subsequent stable growth
of cracks and microcracks, which nucleate from initial
defects in the process zone. According to the DQEA
process zone only the normal stress is significant in the process
zone close to the notch-tip in addition to the local reac-
tion line-force P’. Therefore, it has already implicitly
been stated that for the analysis of the time-interval,
which is characterized by both the passage of the max-
imum impact line-forceP and the stable growth of the

-~ Lline—forces P, P in the mid-plane

— — Longitudinal waves critical crack giving rise to final rupture, only the ap-
. Tronverse maves proximately uniform normal stregssandP’ need to be
considered.
VWU Reyleign surface waves Moreover, it may be assumed, that an increase of
the pendulum forcd® by a factorg goes with an in-
<< > Normal stress in the mid-pene crease of the reaction line-ford® by the same fac-

tor B, if the force-input of the pendulum follows the
coupling-pattern described by the DQEA,; for if the re-
alistic assumptions are made, that the pendulum acts
like a rigid indenter and that the maximum penetration
depth of the pendulum is small in comparison to the
connects the impact contact zone with the process zon#ickness of the specimen, then the angular distribution
is postulated as the unique relevant transfer zone aff the relative energy, emitted per time-interval into the
these longitudinal waves, which are building 8.  tested specimens, can be considered as being approxi-
The remaining energy input of the impact line-fofee  mately P-independent. Furthermore, if the central bar-
whichis not contributing to the formation of the local re- channel remains nearly geometrically unchanged dur-
action line-forceP’, is assumed as being steadily trans-ing the Charpy test until rupture occurs by unstable
formed into Rayleigh surface waves as well as transerack extension, then the proportionality between
verse and longitudinal waves, spreading out all oveand P’ is evident. The mentioned assumptions are ac-
the specimen in all remaining directions. These wavegeptable for ferritic-martensitic steels, which are tested
interfere by undergoing (multiple-)reflection and dis- in the DBTT-range. The same is evident for other ma-
persion at grainboundaries and surfaces prior to conterials at any testing-temperature, if their toughness po-
tributing to the stress distribution in the central bar-tential is similar to the one of ferritic-martensitic steels
channel in an approximately uniform manner. Thus, abeing tested in the DBTT-range.
relevant, only weakly oscillating normal stresis built The short retardation-time of the reaction line-force
up in the central bar-channel during the time-intervalP’, which is built up at the notch-tip, with regard to
corresponding to the dynamic quasi-equilibrium, i.e.the pendulum forc® acting at the impact contact, has
before final rupture occurs by unstable crack growthnot yet been considered. However, this effect is thought
(see Fig. 1). On the other side, the axial stress contrito be negligible for common types of Charpy impact
bution of the multiple-reflected waves is assumed to bespecimens for the following reasons: First, the impact
negligible in the central bar-channel, if the DQEA cancontact zone is situated close to the process zone in
be applied. As a matter of fact, the axial stress comthis case [3]. Secondly, the time needed to transmit
ponent is only relevant with respect to failure mecha-the reaction of an increase of the pendulum fdPce
nisms (such as nucleation and growth of microcrackshe process zone at the notch tip by longitudinal stress
or cracks, crack-tip shielding etc.) in the small pro-waves is much smaller than the time-interval, which
cess zone along the notch-tip. Thus, it is evident foris marked by the begin of loading of the specimen and
physical and geometrical reasons, that the local axials start of final, brittle failure. Consequently, the error
stress contribution of the multiple-reflected waves inarising by assuming proportionality betweé&hand
the process zone must be very small in comparison t¢’ is small with respect to the mentioned retardation
the corresponding local, axial stress contribution of theeffect, i.e.P is only changing very few during the short
highly concentrated, longitudinal wave-systems emergretardation-time ofP’, if the Charpy impact tests are
ing from the impact contact zone and expanding alongerformed with the usual pendulum speeds (1-5 m/s).
the central bar-channel down to the notch-tip. In addition, the retardation-time is always the same for
The reaction line-forcd’ is responsible for the for- tests being performed with equal pendulum speeds.
mation of the process zone ahead of the notch-tip. Th&hus, the error might be even considerably minor for
local strain rate in the process zone is estimated a€harpy impact tests, which are focused on the scatter
having values between 1@nd 1§ s, if usual pen-  of scaled maximum impact line-forces. The latter is

Figure 1 Graph displaying the dynamic quasi-equilibrium approach
(DQEA) for Charpy impact testing.

4450



the claim for the evaluation method being developedacterized by stable crack growth under the influence of
later on in this article. both an uniform applied stress and a local contact load,
In order to be able to apply the DQEA, it must be the latter being equivalent to a local, residual stress
avoided, that brittle failure already occurs in the inertia-field [6, 8, 10]. As a matter of fact, it is possible to
affected load stage. On the contrary, a process zone argsign the uniform applied stress to the normal stress
the corresponding residual stress field with comprese, if the process zone of a Charpy specimen is consid-
sive components hasto be formed by localized, partiallyered, whereas the local contact load can be assigned
adiabatic, elasto-plastic deformation during the inertiain this case to the reaction line-for¢& acting at the
affected load stage. Hence, the testing-temperatuneotch-tip and producing the local residual stress field
must not be selected much lower than the DBTT, thuseing related to the process zone. Consequently, the
still enabling at least the formation of a minimum pro- Cook-and-Clarke model (CCM) is also valid for three-
cess zone due to adiabatic heating; for the minimunpoint bend tests being overlaped by simultaneously per-
process zone hinders the tested specimen from undefiermed static indentation tests at the notch-tip, i.e. the
going brittle fracture already in the inertia-affected loadCCM can be used for the evaluation of data of instru-
stage. Besides, the formation of a process zone is a preaented Charpy impact tests, if the DQEA is valid.
requisite for the occurrence of stable crack growth and, Cook and Clarke [10] modelled the driving force for
consequently, the possibility of using the DQEA. Thefracture as the sum of two components, one stabilizing
DQEA then enables the evaluation of dynamic Weibulland the other destabilizing crack propagation. Thus, the
modulim’ from instrumented Charpy impact tests. Thenet stress intensity factd¢, is also consisting of two
dynamic Weibull modulim’ are expected to be nearly components. The first componeit, arises from the
testing-temperature-independent, if the tests are peuniform applied stress destabilizing crack propaga-
formed in the DBTT-range and if the DQEA is valid; tion, and the second componéfytis due to a localized
for m’ has only been evaluated from the lowfax  loadingF decreasing the driving force for fracture with
range of series of Charpy tests, being performed unincreasing crack lengtt The localized component is
der equal testing conditions. Thums,is merely related modelled as a residual stress intensity factor, arising
to the testing-temperature-independent, brittle cleavagiEom the elastic-plastic deformation field of a sharp par-
fracture events starting from minimum process zonesticle contact. The resistance to crack extensionRhe
which occur in the whole DBTT-range although with curve, has been described in this two-component model
temperature-dependent frequencies. by an increasing power laR o ¢?* (the toughening ex-
ponent is characterizing the rate of toughness increase
with increasing crack length). Besides, the following
. . . restriction O< t <0.5 is valid, because, otherwise, no
3. Localized deformation and residual stable crack growth can occur in the framework of the
stress fields CCM [10].
In the case of dynamic Charpy impact testing of brit-  sjng equilibrium fracture criteria, it is possible to
tle materials, undergoing stable crack growth prior togescripe the fracture behaviour of brittle materials
failure, only the stress distribution in the process zong ndergoing an amount of stable crack growth prior
along the notch-tip of the specimen is relevant; for they fajlure, in terms of applied stress, localized load-
formation of maximum tensile stresses, as well as NUing and crack length. The following calculations are
cleation and growth of cracks and microcracks, takemainly based on the original treatment of Cook and

place in this area. Therefore, dynamic Charpy impacgjarke [10]. The net stress intensk§ is given in the
tests with materials, which fulfill the conditions men- yyo-component model by

tioned in Section 2, can be modelled in the framework
of the DQEA by three-point bend tests being overlaped K| = Ka+ K, (12)
by simultaneously performed static indentation tests.
The static indentation tests provide the local reactiomccording to Linear Elastic Fracture Mechanics
line-force P’ along the notch-tip, and the simultane- (LEFM) the applied stress intensity factt, always
ously performed three-point bend tests, give rise to theakes the form [11]
additional relevant normal stresses in the central bar-
channel along the mid-plane [6]. Besides, the relevant Ka = dio+/C (13)
normal stress in the small process zone has been ap-
proached in the framework of the DQEA, by the ap-Furthermore, the constants are denoted ty
proximately uniform valuer (see Fig. 1). Differences d,,...,d;. The local componenK, represents the
between the predicted stress distributions of the DQEAesidual stress intensity factor arising from a localized,
and the real stress distributions of the correspondinglastic/plastic deformation field [10K, might be the
Charpy impact tests are thus restricted to the remainresult of a sharp particle contact or of other interaction
ing side-parts of the specimen. On the other side, it hamechanisms, however, it is mostly possible to treat it
already been shown in Section 2, that the stress diswith the following equation [6, 10],
tribution outside the process zone is irrelevant for the
considered type of Charpy impact testing in the DBTT- K, = dpFc 2 (14)
range.

Cook and Clarke [10] developed a two-componentwherebyr denotes a numerical constant characteriz-
model, which can be applied to situations, being charing the geometry of the localized loading. The fracture
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resistance, and hence the toughnksss related to the  which is directly measured by performing instrumented
work necessary for incremental crack extendiohy Charpy impact tests, is assumed to be proportional to
P’ according to the DQEA. Thus, we find
T=+vRE (15) -
0 & (Pmax)z+1 (20)
wherebyE denotes the Young’s modulus [10, 11]. On
the other side, th&-curve is usually assumed to show wherebyPnyax denotes the maximum impact line-force
the power law dependend@o c® [6, 10, 11]. Thus, arising during Charpy impact tests, if the DQEA ap-
we find for the fracture toughne3s plies.

T =dsc” (16)
4. Dynamic Weibull master curves
An equilibrium for the fracture system has been ob-According to Equation 20 of Section 3, it is possible
tained, only when the mechanical energy released fofo express the cumulative Weibull failure probability
a virtual crack advance equals the work used to creatgistributionP (o) also in terms of the maximum impact
new crack surfaces. Interms of stress intensity fa€{or  |ine-force Pray, if the threshold load-valu®max., be-
and toughness, the equilibrium condition facilitating  Jow which the cumulative probability of failure would
stable crack propagation is simply definedy=T.  pe 100%, is equal to zero [6, 10];
According to Equations 12-16 the equilibrium condi-
tion can thus be written as follows: Prax \™
P(Pna) = 1— exp[—( ) } (21)
I:)maxo

tho/C+ daFC2 = dac’ (17)

wherebym’ denotes a modified, dynamic Weibull mod-

In the framework of the DQEA, this equilibrium con- ulus defined by

dition is thought to be fulfilled locally in the process
zone of the Charpy specimen. Moreover, the instability 2r—1

condition, which is characterizing the begin of brittle m=m>—7 (22)
failure by unstable crack propagation, is also assumed

to be valid in this case, at least in the process zone, iPyaxo represents a normalizing factor which has di-
the DQEA is valid. The instability condition is given mensions of load. The approa&hax. ~ 0 is plausi-

by [10], ble especially for materials undergoing an amount of
stable crack growth prior to failure; for in these cases

K 1 | —r1 ., T no significant thresholds are probable, which do not re-
T Edlafcf - EdZFfo =tdsG; " = 3c sult at least in microstructural changes. Microstructural

changes, however, are already taken into account by ap-

(18)  propriately defined deviation parameters characterizing
whereby the variables;, F; andc; are special cases the toughening potential of the investigated material.
of o, F andc refering to the uniform stress, localized Thus, the introduction of a threshold lo&ax; is not
load and crack length values, which correspond to thaecessary in these cases. Besidgsis always nega-
onset of unstable crack propagation, i.e. brittle failure tive, because the following limitation for the toughen-
Therefore, Equations 12—17 are also true,iF andc  ing exponent is valid [10]: 0< t < 0.5. Consequently,
are replaced by:, Fr andc. In the framework of the  P(Pnax= 0) is equal to one, although in the quasi-static
DQEA, being focussed on the process zone of the specaseP (o = 0) is equal to zero.
imens, the maximum normal stressay, arising in the The dynamic Weibull master curved[€'(z), nY],
process zone, is considered to be equivalent to the uni<(x’, m’) and K(y’, m’), are derived from the two-
form applied stress; of the CCM, and the maximum parameter cumulative failure probability distribution
reaction line-forceP;, ., arising during the Charpy im- function P(Pyax) in the same way, as the quasi-
pact test prior to brittle failure, can be regarded as bestatic Weibull master curvesl![e(z), m], | (x, m) and
ing equivalent to the localized loadirig of the CCM. K (y, m) have been derived from the three-parameter
However, the meaning of the crack length remains uneumulative failure probability distribution function
altered. Ifc andc; are eliminated in equations 17 and P(o) [4]. The scaled, dynamic variableqz), x" and

18, the following relation is found [6, 10]: Yy’ have been defined like the scaled, quasi-static vari-
ablese(z), x and y; however, the role of the ap-
o= d4(Pr;1ax)§;_;'1 (19) plied failure stressr is played in the dynamic case

by the maximum impact line-forc®y,,«. Moreover,
Finally, the numerical constantis equal to one for a the quasi-static parametess, oin, 0o, i ando cor-
line-force center loading of a linear crack [10]. This respond to the dynamic parametePsaxz, Pmax in
is the case for the reaction line-for&8, acting on the  Prnaxo, Pmax andPmax, Whereas the quasi-static thresh-
process zone along notch-tip of the Charpy specimensld parametet, corresponds to zero in the dynamic
(see Fig. 1). The process zone is always the nucleatiocase. Under dynamic loading conditions, being re-
site of the critical, linear crack, which undergoes anlated to negative, dynamic Weibull moduliv <O,
amount of stable crack growth prior to become unstablexperimental failure dataPpax; P(Pmax)) are eval-
and promote brittle failure. The impact line-foré&&  uated with the help of a step functioRl’[€(2)];
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this function has been defined as being equal to on&he dynamic quotientd xy, dx, anddyy, being re-

for €(z) <€, and equal to zero foe'(z)>€,; €, lated to negative dynamic Weibull moduli, are ex-

is representing the&'(z)-value corresponding to the pected to come out as material-specific, in a first ap-
cross-over point of the experimental dynamic Weibullproach, like the quasi-static quotierig, x| andxk [5].
master curveM explg’(z), m'] and the corresponding dywm, dx,; anddyy are positive and finite fom’ < —1.
theoretical dynamic Weibull master curMg €'(z), m']. Unfortunately, these dynamic quotients are not help-
The two areas being formed between the step funcful for —1<m’ <0; fordym anddy, are constantly
tion H'[€(2), M and M[€(2), m], are denoted by zero in these cases, since the corresponding devia-
FiM1[€(2)]and FiIM2[€(2)]. FexpIM'[€(2)] and tion parameters-iM2[€(2)] and FiM2'[€/(zin)] ex-

F exp 2V'[€(2)] represent the two areas formed be- hibit positive-infinite values, wherealyy is not even
tween M exple'(z), mM] and M[€(z), m], whereby always existing as a real number for this restriatéd

M exple/(z), m'] is constructed by calculating the dy- range. The dynamic master curvis§€e'(z=0.5), m']
namic Weibull modulusn’ from the lowerPnac-range  andl (x’, m’) are displayed in Figs 2 and 3 far <O,

of the experimental, cumulative failure probability dis- whereas the master curvé&sy’, m’) are depicted in
tributions P(Pmax) [4—6]. BesidesFiM1'[€(z)] and  Fig. 4 form’ < —1. The transformation equations for

F exp IM'[€/(2)] represent the areas being situated bethe three types of quasi-static master curves, which have
low the cross-over poire, (z), whereas the opposite is already been given in part 1 of this series of papers by
valid for FiM 2[€/(2)] and F exp 2M’'[€(2)]. With the  Equations 9-15 and 37-43 [4], are also true for the
help of FiM1'[€(2)], FIM2[€(2)], FexpIM'[€(2)]  dynamic Weibull master curves.

and F exp 2V'[€(2)] significant quotients, character-  If the different types of dynamic Weibull master
izing the dynamic toughening potential of the investi- curves are compared to one another at distinct values
gated materials, can be defined. The dynamic, materiabf the scaled variables by settigz=0.5)= x' =
specific quotientslxy, dy; anddyy are defined in Yy’ =constant, the following relation is found to be valid
analogy to the quasi-static, material-specific quotientfor m’ < O:

xm, xi andy [5].

_ FIMY[€@]/FiM2[€(2)]
" FexpIM'[e€(2)]/F exp 2W/[€(2)]

Thed xw-values of the special dynamic master curvedn 2ddition, - for expe/rimentally relevant, dynamic
| (x', M) andK (y', m), denoted bydy; anddxx, are We|buII moduh—;; m >~—10 the following rela-
easily calculated by strictly replacirmgby zi, or zin  on has been verified:

all relevant formulas, which are related to the gen-
eral type of Weibull master curvelsl[€/(z), m'] and

M exple'(2), m']. The general dynamic deviation parameters
FiM 1€ z)]/FiM 2[e @] FiM1[€(2)], FiM2[€(2)], FexpIM'[€(2)] and

1
[(x',m)>1- o~ 0.63> M[€/(z=0.5), m]=0.5
(23) (26)

dxm

I(x,m) > M[€(z=0.5), M] > K(Yy,m) (27)

U= Fep e /Fenm e 0 fions ) o o demed anaiealy s
&,(2)
FiM1[e(@)]/FiM2[e(2)] FIMITE(D] = / {1- M[€(2), mT} d[€(2)]
dxk = (25) 0
F exp IM'[€/(2)]/F exp M'[€(2)] (28)
e’(z=0.5)

Figure 2 The general type of dynamic Weibull master curtéfe’(z=0.5), m’] being related to the cumulative failure probability= 0.5.
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Figure 3 The special type of dynamic Weibull master cur¥és’, m’).

0.75

0.5
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Figure 4 The special type of dynamic Weibull master curieg/’, nv).

o0

FiM2[€(2)] = /

€:(2)

{M[€(2), M1} d[€(2)] (29) FiM 1€ (zn)]

€r(zn)
= [ 11— Mieen). m) dle e
&2
Fexp IM'[€(2)] = /0 M exple(z), m']

X
= / [1— 1 (X, m)]dxX (32)
— M[€(2), m]| d[€(2)] (30) 0
Fexp2M'[€(2)] = /e' o M explg'(z), m'] FiM2[€(zin)]
cr z
~ M@, miidie @) GO = [ M. m) die )]
e{:r(zin)
The dynamic deviation parameters of the special mas- o
ter curvesl (x’, M) andK (y’, m’) are obtained, it is = / I (x', m)dx (33)
replaced by, or Zin Equations 28-31. X
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€. (zin)
F exp M€ (z)] = / M exple/(zi). ]
0

— M[€(zn). m]| d[€'(zn)]

= fxcr [l expk’, m') — I (x', m)|dx (34)
0
Fexp M'[€(zin)] = / ) IM exple/(zin), M']
€. (zn)
— M[€(zin), M]| d[€(zin)]
= /oo [ expk’, M) — I (x', m)|dx (35)

e,(2)
FiM1[e@)] = /O (1- M[E@. ]} d[e(@)]

Yer
- /0 [1— K(y.m)]dy (36)
FiM2[€(D)] = / " (MIE@. M) dE@)]
e,(2)
_ / K(y', m)dy (37)
y(’)f
F exp M [€()]

€,(2)
/0 M exple(@. m] - M@, m]| d[€(@)]

/0 K expy.m) — K(y.myldy  (38)

F exp M[€(D)]
" IMexpE@. m] — MIE@), m] d[€@)]

Lo

erZ,

]

cr

oo

IK exp(y’, m') — K(y', m)|dy

(39)

5. Discussion and conclusions

According to the DQEA, an indirect correspondence
exists between the dynamic maximum impact line-
force Pnax and the quasi-static applied failure stress

i.e. high applied failure stresses in quasi-static tests cor-

respond to low maximum impact line-forces in dynamic

Weibull modulim’, which always exhibit negative val-
ues. The interpretation of the dynamic deviation param-
eters with respect to the CCM will mainly be performed
for the general type of dynamic Weibull master curves
M[€(2), m'] of ferritic-martensitic steels in part 4 of
this series of papers. Nevertheless, the evaluated con-
sequences will also be true for the two other types of dy-
namic Weibull master curvel(x’, m’) and K (y’, m’),
since they represent special casebIdp€ (z), m'] being
displayed in specific notations.

The dynamic Weibull master curvdgx’, m') and
| exp(x’, m'), as well as the dynamic deviation parame-
tersFiM 1'[€(zin)], FIM2[€(zn)], F exp IM'[€(zin)],
F exp 2V'[€(z)] and dy,, are the most convenient
means for the evaluation of Charpy impact tests;
for these Weibull master curves show a favorable
value-distribution in the relevanty-range according
to Equations 26-27, and they can be obtained for
all the possible dynamic Weibull modulin’ < 0.
Moreover, they are related to a scaling factor, which is
experimentally highly relevant being the most probable
maximum impact line-forc@maxin. Finally, K(y’, m’),
K exply’, m'), M[€(2), mM] and M expl[e'(z), m] can
usually be calculated frorh(x’, m') and | exp’, m’)
by using the transformation equations given in part 1
of this series of papers [4] being valid for experimental
as well as theoretical quasi-static and dynamic Weibull
master curves.
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