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The existence of specimen-size-independent quasi-static Weibull master curves for
macroscopically homogeneous solids characterizing strength and failure of both purely
brittle materials and rather tough materials, which undergo an amount of stable crack
growth prior to failure, has already been proved in earlier publications. In this paper, the
concept of Weibull master curves is extended to the case of dynamic testing conditions,
being typical for Charpy impact tests performed in the ductile-to-brittle transition
temperature-range of ferritic-martensitic steels. Dynamic Weibull master curves can be
constructed, if the stress-distributions, which are built up in the process zone of the
specimens during the Charpy impact tests, can be described with a dynamic
quasi-equilibrium approach. In this case, the dynamic Weibull master curves can be related
to the quasi-static Weibull master curves with the help of the toughening exponent τ ,
characterizing the rate of toughness increase with increasing crack length. Characteristic
magnitudes, being most convenient to estimate the capacity of the tested materials to
undergo stable crack growth, microcracking and crack-tip shielding prior to rupture, can be
derived as well from dynamic Weibull master curves as from quasi-static Weibull master
curves. C© 1999 Kluwer Academic Publishers

Nomenclature
vpend pendulum velocity at begin of

impact
di , β constants
c crack length
r numerical constant

characterizing the geometry of
the localized loading

σ applied failure stress or normal
stress built up in the process
zone

σmax maximum normal stress
P(σ ) quasi-static, three-parameter,

cumulative Weibull failure
probability distribution
function

σ0 normalizing factor in
dimensions of stress

στ threshold stress, below which
no failure occurs

σin failure stress at the inflexion
point of P(σ )

σ̄ mean failure stress
m Weibull modulus
z distinct value of the

cumulative failure probability

distribution function
σz failure stress corresponding to

the cumulative failure
probabilityz

KI failure stress intensity
τ toughening exponent
R work necessary for

incremental crack extension
T fracture resistance
E Young’s modulus
P pendulum force acting on the

Charpy specimen
F localized load
P′ reaction line-force built up at

the notch-tip of the Charpy
specimens during testing

Ka separated stress intensity
factor due to uniform applied
stress

Kr separated stress intensity
factor due to localized,
residual stress field

m′ dynamic Weibull modulus
Pmax maximum impact line-force

built up during the Charpy
impact test
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P(Pmax) dynamic, two-parameter,
cumulative Weibull failure
probability distribution
function

P′max maximum reaction line-force
at the notch-tip arising during
the Charpy impact test

Pmax 0 normalizing factor in
dimensions of load

Pmaxτ threshold load-value
Pmaxz maximum impact line-force

corresponding to the
cumulative failure
probabilityz

Pmax in maximum impact line-force at
the inflexion point of the
two-parameter, cumulative
Weibull failure probability
distribution functionP(Pmax)

P̄max mean-value of the maximum
impact line force

σf, Ff, cf values ofσ, F andc
corresponding to the onset of
unstable crack propagation

I (x,m), K (y,m) three different types of
andM [e(z),m] quasi-static, theoretical

Weibull master curves
I exp(x,m), three different types of
K exp(y,m) and quasi-static, experimental
M exp[e(z),m] Weibull master curves
x, y ande(z) different types of scaled failure

stresses
xcr, ycr,ecr(z) values of the cross-over points

formed by the corresponding
experimental and theoretical
master curves

H [e(z)] step function being equal to
zero fore(z)<ecr(z) and equal
to one fore(z)≥ecr(z)

Fi M 1[e(z)], deviation parameters
Fi M 2[e(z)], derived from the step
F exp 1M [e(z)], function H [e(z)] and
F exp 2M [e(z)], from the quasi-static
χM , χI andχk Weibull master curves

M [e(z),m] and
M exp[e(z),m]

I (x′,m′), K (y′,m′) three different types of
andM [e′(z),m′] dynamic, theoretical Weibull

master curves
I exp(x′,m′), three different types of
K exp(y′,m′) dynamic, experimental
andM exp[e′(z),m′] Weibull master curves
x′, y′ande′(z) different types of scaled

maximum impact line-forces
x′cr, y′cr,e

′
cr(z) values of the cross-over points

formed by the corresponding
experimental and theoretical
master curves

H ′[e′(z)] step function being equal to
one fore′(z)<e′cr(z) and equal
to zero fore′(z)≥e′cr(z)

Fi M 1′[e′(z)], deviation parameters
Fi M 2′[e′(z)], derived from the step

F exp 1M ′[e′(z)], function H ′[e′(z)] and
F exp 2M ′[e′(z)], from the dynamic
dχM ,dχI anddχk Weibull master curves

M [e′(z),m′] and
M exp[e′(z),m′]

1. Introduction
9–12 wt % Cr ferritic-martensitic steels with fine car-
bide structures are considered to be promising ap-
plicants for structural materials in fusion technology,
mainly because of their high strength, low thermal di-
latation and high resistance to void swelling [1]. How-
ever, they are sensitive to irradiation embrittlement
causing a shift of the ductile-to-brittle transition tem-
perature (DBTT) to higher values [2]. The DBTT is
generally studied with the help of instrumented Charpy
impact tests [3], which are performed at distinct testing-
temperatures. These tests provide the Charpy energies
(absorbed impact energies) of the specimens, being
evaluated by integration of the measured load versus
time diagrams [3]. Charpy energy versus temperature
diagrams are generally used in order to characterize
the ductile-to-brittle transition of ferritic-martensitic
steels.

In this paper, the scatter of the maximum pendulum
force for a definite material at a fixed testing-tempe-
rature in the DBTT-range, is studied by performing se-
ries of instrumented Charpy impact tests. Therefore, the
quasi-static Weibull model has been modified into a dy-
namic Weibull model, which is applicable to uniaxial,
localized dynamic loading conditions. The quasi-static
and the dynamic Weibull models enable qualifica-
tion and quantification of the amount of microcrack-
nucleation, microcrack-propagation, crack-tip shield-
ing and stable crack growth having been undergone by
the tested samples prior to rupture, by simply testing 20
to 30 specimens under equal testing-conditions. Nucle-
ation and stable growth of (micro-)cracks are supposed
to be important parameters in estimating DBTT-shifts
due to irradiation embrittlement.

In part 1 and 2 of this series of papers [4, 5], the
specimen-size-independent, three-parameter cumula-
tive failure probability distribution functionP(σ ) has
been shown as significant, if an uniaxial tensile stress
σ is applied to the investigated specimens under quasi-
static loading conditions, as for example in tensile or
bend tests. Specimen-size-independent Weibull master
curves represent scaled cumulative failure probability
distribution functions. The general type of Weibull mas-
ter curvesM [e(z),m] is obtained by scalingP(σ ) with
any stressσz corresponding to a distinct, cumulative
failure probabilityz. As a result, the following trans-
formations can be performed [4],

P(σ ) = 1− exp

{
−
(
σ − στ
σ0

)m}
; σ > στ (1)

P(σz) = z (2)

wherebymdenotes the Weibull modulus,στ the thresh-
old failure stress underneathP(σ ) is zero andσ0 a
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normalizing factor which has dimensions of stress. If
the variable transformation

e(z) = σ − στ
σz− στ (3)

has been accomplished, the quasi-static Weibull master
curvesM [e(z),m] are obtained [4]:

P(σ ) = M [e(z),m] = 1− (1− z)[e(z)]m

(4)

Two further types of quasi-static Weibull master curves
I (x,m) and K (y,m), repesenting special cases of
M [e(z),m], are calculated by scalingP(σ ) with the
mathematically relevant stress-value of the correspond-
ing inflexion pointσin or by scalingP(σ ) with the
physically highly significant mean stress ¯σ = ∫ 1

0 σd P.
I (x,m) exists form<0 andm>1, whereasK (y,m)
always exists form<−1 andm>0. The scaled failure
stressx andy are defined as follows [4]:

x = σ − στ
σin − στ (5)

y = σ − στ
σ̄ − στ (6)

Thus, the special master curvesI (x,m) and K (y,m)
can be written as follows;

P(σ ) = I (x,m) = 1− exp

[
(1−m)

m
xm

]
(7)

P(σ ) = K (y,m)=1− exp

{
−
[
0

(
1+ 1

m

)]m

ym

}
(8)

whereby0(1 + 1
m) represents the complete Gamma-

function [4].
In part 2 of this series of papers [5], it has been dis-

played that quasi-static experimental Weibull master
curves of materials undergoing an amount of stable
crack growth prior to failure, facilitate the character-
ization of the toughening mechanisms operating in the
investigated materials. The quasi-static experimental
Weibull master curves are derived from uniaxial ten-
sile or bend tests [5]. Furthermore, it has been shown
that the quasi-static experimental Weibull master curves
M exp[e(z),m], I exp(x,m) and K exp(y,m) can be
constructed with the help of special numerical or graph-
ical techniques, by simply calculating the Weibull mod-
ulus m from the upperσ -range of the experimental,
cumulative failure stress distributionsP(σi ) [4–8]. Be-
sides,m>0 has been verified under quasi-static con-
ditions. In order to evaluate experimental failure data
(σi , P(σi )), a step functionH [e(z)] being equal to zero
for scaled failure stressese(z)<ecr(z) and equal to one
for e(z)≥ecr(z), has been defined [5]. The two areas
formed betweenH [e(z)] and M [e(z),m] are denoted
by Fi M 1[e(z)] and Fi M 2[e(z)]. F exp 1M [e(z)] and
F exp 2M [e(z)] represent the two corresponding ar-
eas formed betweenM [e(z),m] and M exp[e(z),m].

Fi M 1[e(z)] and F exp 1M [e(z)] denote the areas,
which are situated below the cross-over pointecr(z) of
M [e(z),m] and M exp[e(z),m], whereas the opposite
is valid for Fi M 2[e(z)] and F exp 2M [e(z)].

Fi M 1[e(z)], Fi M 2[e(z)], F exp 1M [e(z)] and
F exp 2M [e(z)] are significant deviation parameters,
distinguishing the toughening potential of the inves-
tigated material. They are used to define the specimen-
size-independent, material-specific quotientsχM given
by

χM = Fi M 1[e(z)]/Fi M 2[e(z)]

F exp 1M [e(z)]/F exp 2M [e(z)]
(9)

TheχM -values of the special master curvesI (x,m) and
K (y,m), denoted byχI andχk, can be calculated as
follows, wherebyzin andz̄ have been defined in detail
in Ref. [5]:

χI = Fi M 1[e(zin)]/Fi M 2[e(zin)]

F exp 1M [e(zin)]/F exp 2M [e(zin)]
(10)

χk = Fi M 1[e(z̄)]/Fi M 2[e(z̄)]

F exp 1M [e(z̄)]/F exp 2M [e(z̄)]
(11)

The static quotientsχM , χI andχk being defined for
positive Weibull modulim are material-specific in a
first approach [5, 7].χM , χI andχk are positive and
finite for m>1. On the other side,χI is not defined for
0<m≤1, althoughχM andχk are also positive and
finite for 0<m≤1.

2. Dynamic model for the evaluation of
instrumented Charpy impact tests

In this section a dynamic model for the evaluation of
instrumented Charpy impact tests is presented. It can
always be applied to materials, whose toughness and
acoustic wave speeds are similar to those of ferritic
steels being tested below or close to the DBTT.

First, a dynamic quasi-equilibrium is defined. In
the case of Charpy impact tests, being performed
with ferritic-martensitic steels in the DBTT-range, the
dynamic quasi-equilibrium is assumed to be achieved in
the process zone of the investigated specimens prior to
brittle failure, if the specimens overcome a short inertia-
affected load stage. The dynamic quasi-equilibrium ap-
proach (DQEA) ensures, that the forceP of the pendu-
lum, which is acting on the specimen during a Charpy
impact test, is nearly a line force, which is steadily
increasing with time prior to failure. The pendulum
is also assumed to remain in contact with the speci-
men after having passed the short inertia-affected load
stage. Moreover, it is presumed, that during the dy-
namic quasi-equilibrium stage a reduced reaction line-
force P′, being proportional toP, is built up opposite
to the contact zone along the notch-tip.P′ is mainly
the result of longitudinal waves, originating in the im-
pact contact zone and expanding straight-forward along
the central bar-channel parallel to the mid-plane down
to the notch-tip, where they are reflected (see Fig. 1).
According to the DQEA the central bar-channel, which
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Figure 1 Graph displaying the dynamic quasi-equilibrium approach
(DQEA) for Charpy impact testing.

connects the impact contact zone with the process zone,
is postulated as the unique relevant transfer zone of
these longitudinal waves, which are building upP′.
The remaining energy input of the impact line-forceP,
which is not contributing to the formation of the local re-
action line-forceP′, is assumed as being steadily trans-
formed into Rayleigh surface waves as well as trans-
verse and longitudinal waves, spreading out all over
the specimen in all remaining directions. These waves
interfere by undergoing (multiple-)reflection and dis-
persion at grainboundaries and surfaces prior to con-
tributing to the stress distribution in the central bar-
channel in an approximately uniform manner. Thus, a
relevant, only weakly oscillating normal stressσ is built
up in the central bar-channel during the time-interval
corresponding to the dynamic quasi-equilibrium, i.e.
before final rupture occurs by unstable crack growth
(see Fig. 1). On the other side, the axial stress contri-
bution of the multiple-reflected waves is assumed to be
negligible in the central bar-channel, if the DQEA can
be applied. As a matter of fact, the axial stress com-
ponent is only relevant with respect to failure mecha-
nisms (such as nucleation and growth of microcracks
or cracks, crack-tip shielding etc.) in the small pro-
cess zone along the notch-tip. Thus, it is evident for
physical and geometrical reasons, that the local axial
stress contribution of the multiple-reflected waves in
the process zone must be very small in comparison to
the corresponding local, axial stress contribution of the
highly concentrated, longitudinal wave-systems emerg-
ing from the impact contact zone and expanding along
the central bar-channel down to the notch-tip.

The reaction line-forceP′ is responsible for the for-
mation of the process zone ahead of the notch-tip. The
local strain rate in the process zone is estimated as
having values between 102 and 103 s−1, if usual pen-

dulum velocities (1 m/s<vpend<5 m/s) and common
specimen-geometries are chosen, and if the DQEA can
be applied. Thus, the process zones may be formed, in
this case, by localized, elasto-plastic deformation under
dynamic, partially adiabatic conditions [9]. The arising
residual stress field, due to the process zone ahead of
the notch-tip, is crucial for the subsequent stable growth
of cracks and microcracks, which nucleate from initial
defects in the process zone. According to the DQEA
only the normal stressσ is significant in the process
zone close to the notch-tip in addition to the local reac-
tion line-forceP′. Therefore, it has already implicitly
been stated that for the analysis of the time-interval,
which is characterized by both the passage of the max-
imum impact line-forceP and the stable growth of the
critical crack giving rise to final rupture, only the ap-
proximately uniform normal stressσ andP′ need to be
considered.

Moreover, it may be assumed, that an increase of
the pendulum forceP by a factorβ goes with an in-
crease of the reaction line-forceP′ by the same fac-
tor β, if the force-input of the pendulum follows the
coupling-pattern described by the DQEA; for if the re-
alistic assumptions are made, that the pendulum acts
like a rigid indenter and that the maximum penetration
depth of the pendulum is small in comparison to the
thickness of the specimen, then the angular distribution
of the relative energy, emitted per time-interval into the
tested specimens, can be considered as being approxi-
matelyP-independent. Furthermore, if the central bar-
channel remains nearly geometrically unchanged dur-
ing the Charpy test until rupture occurs by unstable
crack extension, then the proportionality betweenP
and P′ is evident. The mentioned assumptions are ac-
ceptable for ferritic-martensitic steels, which are tested
in the DBTT-range. The same is evident for other ma-
terials at any testing-temperature, if their toughness po-
tential is similar to the one of ferritic-martensitic steels
being tested in the DBTT-range.

The short retardation-time of the reaction line-force
P′, which is built up at the notch-tip, with regard to
the pendulum forceP acting at the impact contact, has
not yet been considered. However, this effect is thought
to be negligible for common types of Charpy impact
specimens for the following reasons: First, the impact
contact zone is situated close to the process zone in
this case [3]. Secondly, the time needed to transmit
the reaction of an increase of the pendulum forceP to
the process zone at the notch tip by longitudinal stress
waves is much smaller than the time-interval, which
is marked by the begin of loading of the specimen and
its start of final, brittle failure. Consequently, the error
arising by assuming proportionality betweenP and
P′ is small with respect to the mentioned retardation
effect, i.e.P is only changing very few during the short
retardation-time ofP′, if the Charpy impact tests are
performed with the usual pendulum speeds (1–5 m/s).
In addition, the retardation-time is always the same for
tests being performed with equal pendulum speeds.
Thus, the error might be even considerably minor for
Charpy impact tests, which are focused on the scatter
of scaled maximum impact line-forces. The latter is
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the claim for the evaluation method being developed
later on in this article.

In order to be able to apply the DQEA, it must be
avoided, that brittle failure already occurs in the inertia-
affected load stage. On the contrary, a process zone and
the corresponding residual stress field with compres-
sive components has to be formed by localized, partially
adiabatic, elasto-plastic deformation during the inertia-
affected load stage. Hence, the testing-temperature
must not be selected much lower than the DBTT, thus
still enabling at least the formation of a minimum pro-
cess zone due to adiabatic heating; for the minimum
process zone hinders the tested specimen from under-
going brittle fracture already in the inertia-affected load
stage. Besides, the formation of a process zone is a pre-
requisite for the occurrence of stable crack growth and,
consequently, the possibility of using the DQEA. The
DQEA then enables the evaluation of dynamic Weibull
modulim′ from instrumented Charpy impact tests. The
dynamic Weibull modulim′ are expected to be nearly
testing-temperature-independent, if the tests are per-
formed in the DBTT-range and if the DQEA is valid;
for m′ has only been evaluated from the lowerPmax-
range of series of Charpy tests, being performed un-
der equal testing conditions. Thus,m′ is merely related
to the testing-temperature-independent, brittle cleavage
fracture events starting from minimum process zones,
which occur in the whole DBTT-range although with
temperature-dependent frequencies.

3. Localized deformation and residual
stress fields

In the case of dynamic Charpy impact testing of brit-
tle materials, undergoing stable crack growth prior to
failure, only the stress distribution in the process zone
along the notch-tip of the specimen is relevant; for the
formation of maximum tensile stresses, as well as nu-
cleation and growth of cracks and microcracks, take
place in this area. Therefore, dynamic Charpy impact
tests with materials, which fulfill the conditions men-
tioned in Section 2, can be modelled in the framework
of the DQEA by three-point bend tests being overlaped
by simultaneously performed static indentation tests.
The static indentation tests provide the local reaction
line-force P′ along the notch-tip, and the simultane-
ously performed three-point bend tests, give rise to the
additional relevant normal stresses in the central bar-
channel along the mid-plane [6]. Besides, the relevant
normal stress in the small process zone has been ap-
proached in the framework of the DQEA, by the ap-
proximately uniform valueσ (see Fig. 1). Differences
between the predicted stress distributions of the DQEA
and the real stress distributions of the corresponding
Charpy impact tests are thus restricted to the remain-
ing side-parts of the specimen. On the other side, it has
already been shown in Section 2, that the stress dis-
tribution outside the process zone is irrelevant for the
considered type of Charpy impact testing in the DBTT-
range.

Cook and Clarke [10] developed a two-component
model, which can be applied to situations, being char-

acterized by stable crack growth under the influence of
both an uniform applied stress and a local contact load,
the latter being equivalent to a local, residual stress
field [6, 8, 10]. As a matter of fact, it is possible to
assign the uniform applied stress to the normal stress
σ , if the process zone of a Charpy specimen is consid-
ered, whereas the local contact load can be assigned
in this case to the reaction line-forceP′ acting at the
notch-tip and producing the local residual stress field
being related to the process zone. Consequently, the
Cook-and-Clarke model (CCM) is also valid for three-
point bend tests being overlaped by simultaneously per-
formed static indentation tests at the notch-tip, i.e. the
CCM can be used for the evaluation of data of instru-
mented Charpy impact tests, if the DQEA is valid.

Cook and Clarke [10] modelled the driving force for
fracture as the sum of two components, one stabilizing
and the other destabilizing crack propagation. Thus, the
net stress intensity factorKI is also consisting of two
components. The first componentKa arises from the
uniform applied stressσ destabilizing crack propaga-
tion, and the second componentKr is due to a localized
loadingF decreasing the driving force for fracture with
increasing crack lengthc. The localized component is
modelled as a residual stress intensity factor, arising
from the elastic-plastic deformation field of a sharp par-
ticle contact. The resistance to crack extension, theR-
curve, has been described in this two-component model
by an increasing power lawR∝ c2τ (the toughening ex-
ponentτ is characterizing the rate of toughness increase
with increasing crack length). Besides, the following
restriction 0≤ τ ≤0.5 is valid, because, otherwise, no
stable crack growth can occur in the framework of the
CCM [10].

Using equilibrium fracture criteria, it is possible to
describe the fracture behaviour of brittle materials
undergoing an amount of stable crack growth prior
to failure, in terms of applied stress, localized load-
ing and crack length. The following calculations are
mainly based on the original treatment of Cook and
Clarke [10]. The net stress intensityKI is given in the
two-component model by

KI = Ka+ Kr (12)

According to Linear Elastic Fracture Mechanics
(LEFM) the applied stress intensity factorKa always
takes the form [11]

Ka = d1σ
√

c (13)

Furthermore, the constants are denoted byd1,
d2, . . . ,di . The local componentKr represents the
residual stress intensity factor arising from a localized,
elastic/plastic deformation field [10].Kr might be the
result of a sharp particle contact or of other interaction
mechanisms, however, it is mostly possible to treat it
with the following equation [6, 10],

Kr = d2Fc−
r
2 (14)

wherebyr denotes a numerical constant characteriz-
ing the geometry of the localized loading. The fracture
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resistance, and hence the toughnessT , is related to the
work necessary for incremental crack extensionR by

T =
√

RE (15)

wherebyE denotes the Young’s modulus [10, 11]. On
the other side, theR-curve is usually assumed to show
the power law dependenceR∝ c2τ [6, 10, 11]. Thus,
we find for the fracture toughnessT :

T = d3cτ (16)

An equilibrium for the fracture system has been ob-
tained, only when the mechanical energy released for
a virtual crack advance equals the work used to create
new crack surfaces. In terms of stress intensity factorKI

and toughnessT , the equilibrium condition facilitating
stable crack propagation is simply defined byKI = T .
According to Equations 12–16 the equilibrium condi-
tion can thus be written as follows:

d1σ
√

c+ d2Fc−
r
2 = d3cτ (17)

In the framework of the DQEA, this equilibrium con-
dition is thought to be fulfilled locally in the process
zone of the Charpy specimen. Moreover, the instability
condition, which is characterizing the begin of brittle
failure by unstable crack propagation, is also assumed
to be valid in this case, at least in the process zone, if
the DQEA is valid. The instability condition is given
by [10],

∂KI

∂c
= 1

2
d1σfc

− 1
2

f −
r

2
d2Ffc

− r
2−1

f = τd3cτ−1
f = ∂T

∂c

(18)
whereby the variablesσf , Ff andcf are special cases
of σ , F andc refering to the uniform stress, localized
load and crack length values, which correspond to the
onset of unstable crack propagation, i.e. brittle failure.
Therefore, Equations 12–17 are also true ifσ , F andc
are replaced byσf , Ff andcf . In the framework of the
DQEA, being focussed on the process zone of the spec-
imens, the maximum normal stressσmax, arising in the
process zone, is considered to be equivalent to the uni-
form applied stressσf of the CCM, and the maximum
reaction line-forceP′max, arising during the Charpy im-
pact test prior to brittle failure, can be regarded as be-
ing equivalent to the localized loadingFf of the CCM.
However, the meaning of the crack length remains un-
altered. Ifc andcf are eliminated in equations 17 and
18, the following relation is found [6, 10]:

σ = d4(P′max)
2τ−1
2τ+r (19)

Finally, the numerical constantr is equal to one for a
line-force center loading of a linear crack [10]. This
is the case for the reaction line-forceP′, acting on the
process zone along notch-tip of the Charpy specimens
(see Fig. 1). The process zone is always the nucleation
site of the critical, linear crack, which undergoes an
amount of stable crack growth prior to become unstable
and promote brittle failure. The impact line-forceP,

which is directly measured by performing instrumented
Charpy impact tests, is assumed to be proportional to
P′ according to the DQEA. Thus, we find

σ ∝ (Pmax)
2τ−1
2τ+1 (20)

wherebyPmax denotes the maximum impact line-force
arising during Charpy impact tests, if the DQEA ap-
plies.

4. Dynamic Weibull master curves
According to Equation 20 of Section 3, it is possible
to express the cumulative Weibull failure probability
distributionP(σ ) also in terms of the maximum impact
line-force Pmax, if the threshold load-valuePmaxτ , be-
low which the cumulative probability of failure would
be 100%, is equal to zero [6, 10];

P(Pmax) = 1− exp

[
−
(

Pmax

Pmax 0

)m′]
(21)

wherebym′ denotes a modified, dynamic Weibull mod-
ulus defined by

m′ = m
2τ − 1

2τ + 1
(22)

Pmax 0 represents a normalizing factor which has di-
mensions of load. The approachPmaxτ ≈0 is plausi-
ble especially for materials undergoing an amount of
stable crack growth prior to failure; for in these cases
no significant thresholds are probable, which do not re-
sult at least in microstructural changes. Microstructural
changes, however, are already taken into account by ap-
propriately defined deviation parameters characterizing
the toughening potential of the investigated material.
Thus, the introduction of a threshold loadPmaxτ is not
necessary in these cases. Besides,m′ is always nega-
tive, because the following limitation for the toughen-
ing exponentτ is valid [10]: 0≤ τ ≤0.5. Consequently,
P(Pmax=0) is equal to one, although in the quasi-static
caseP(σ =0) is equal to zero.

The dynamic Weibull master curvesM [e′(z),m′],
I (x′,m′) and K (y′,m′), are derived from the two-
parameter cumulative failure probability distribution
function P(Pmax) in the same way, as the quasi-
static Weibull master curvesM [e(z),m], I (x,m) and
K (y,m) have been derived from the three-parameter
cumulative failure probability distribution function
P(σ ) [4]. The scaled, dynamic variablese′(z), x′ and
y′ have been defined like the scaled, quasi-static vari-
ables e(z), x and y; however, the role of the ap-
plied failure stressσ is played in the dynamic case
by the maximum impact line-forcePmax. Moreover,
the quasi-static parametersσz, σin, σo, σi and σ̄ cor-
respond to the dynamic parametersPmaxz, Pmax in,
Pmax 0, Pmaxi andP̄max, whereas the quasi-static thresh-
old parameterστ corresponds to zero in the dynamic
case. Under dynamic loading conditions, being re-
lated to negative, dynamic Weibull modulim′<0,
experimental failure data (Pmaxi ; P(Pmaxi )) are eval-
uated with the help of a step functionH ′[e′(z)];
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this function has been defined as being equal to one
for e′(z)<e′cr and equal to zero fore′(z)≥e′cr; e′cr
is representing thee′(z)-value corresponding to the
cross-over point of the experimental dynamic Weibull
master curveM exp[e′(z),m′] and the corresponding
theoretical dynamic Weibull master curveM [e′(z),m′].
The two areas being formed between the step func-
tion H ′[e′(z),m′] and M [e′(z),m′], are denoted by
Fi M 1′[e′(z)] and Fi M 2′[e′(z)]. F exp 1M ′[e′(z)] and
F exp 2M ′[e′(z)] represent the two areas formed be-
tween M exp[e′(z),m′] and M [e′(z),m′], whereby
M exp[e′(z),m′] is constructed by calculating the dy-
namic Weibull modulusm′ from the lowerPmax-range
of the experimental, cumulative failure probability dis-
tributions P(Pmaxi ) [4–6]. Besides,Fi M 1′[e′(z)] and
F exp 1M ′[e′(z)] represent the areas being situated be-
low the cross-over pointe′cr(z), whereas the opposite is
valid for Fi M 2′[e′(z)] and F exp 2M ′[e′(z)]. With the
help of Fi M 1′[e′(z)], Fi M 2′[e′(z)], F exp 1M ′[e′(z)]
and F exp 2M ′[e′(z)] significant quotients, character-
izing the dynamic toughening potential of the investi-
gated materials, can be defined. The dynamic, material-
specific quotientsdχM , dχI and dχk are defined in
analogy to the quasi-static, material-specific quotients
χM , χI andχk [5].

dχM = Fi M 1′[e′(z)]/Fi M 2′[e′(z)]

F exp 1M ′[e′(z)]/F exp 2M ′[e′(z)]
(23)

ThedχM -values of the special dynamic master curves
I (x′,m′) andK (y′,m′), denoted bydχI anddχk, are
easily calculated by strictly replacingz by zin or z̄ in
all relevant formulas, which are related to the gen-
eral type of Weibull master curvesM [e′(z),m′] and
M exp[e′(z),m′].

dχI = Fi M 1′[e′(zin)]/Fi M 2′[e′(zin)]

F exp 1M ′[e′(zin)]/F exp 2M ′[e′(zin)]
(24)

dχk = Fi M 1′[e′(z̄)]/Fi M 2′[e′(z̄)]

F exp 1M ′[e′(z̄)]/F exp 2M ′[e′(z̄)]
(25)

Figure 2 The general type of dynamic Weibull master curvesM [e′(z=0.5),m′] being related to the cumulative failure probabilityz=0.5.

The dynamic quotientsdχM , dχI anddχk, being re-
lated to negative dynamic Weibull modulim′, are ex-
pected to come out as material-specific, in a first ap-
proach, like the quasi-static quotientsχM ,χI andχk [5].
dχM , dχI anddχk are positive and finite form′<−1.
Unfortunately, these dynamic quotients are not help-
ful for −1<m′<0; for dχM anddχI are constantly
zero in these cases, since the corresponding devia-
tion parametersFi M 2′[e′(z)] and Fi M 2′[e′(zin)] ex-
hibit positive-infinite values, whereasdχk is not even
always existing as a real number for this restrictedm′-
range. The dynamic master curvesM [e′(z=0.5),m′]
and I (x′,m′) are displayed in Figs 2 and 3 form′<0,
whereas the master curvesK (y′,m′) are depicted in
Fig. 4 for m′<−1. The transformation equations for
the three types of quasi-static master curves, which have
already been given in part 1 of this series of papers by
Equations 9–15 and 37–43 [4], are also true for the
dynamic Weibull master curves.

If the different types of dynamic Weibull master
curves are compared to one another at distinct values
of the scaled variables by settinge′(z=0.5)= x′ =
y′ = constant, the following relation is found to be valid
for m′<0:

I (x′,m′)>1− 1

e
≈0.63>M [e′(z=0.5),m′]=0.5

(26)

In addition, for experimentally relevant, dynamic
Weibull moduli−1>m′>≈−108 the following rela-
tion has been verified:

I (x′,m′) > M [e′(z= 0.5),m′] > K (y′,m′) (27)

The general dynamic deviation parameters
Fi M 1′[e′(z)], Fi M 2′[e′(z)], F exp 1M ′[e′(z)] and
F exp 2M ′[e′(z)] can be defined analytically as
follows:

Fi M 1′[e′(z)] =
∫ e′cr(z)

0
{1− M [e′(z),m′]} d[e′(z)]

(28)
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Figure 3 The special type of dynamic Weibull master curvesI (x′,m′).

Figure 4 The special type of dynamic Weibull master curvesK (y′,m′).

Fi M 2′[e′(z)] =
∫ ∞

e′cr(z)
{M [e′(z),m′]} d[e′(z)] (29)

F exp 1M ′[e′(z)] =
∫ e′cr(z)

0
|M exp[e′(z),m′]

−M [e′(z),m′]| d[e′(z)] (30)

F exp 2M ′[e′(z)] =
∫ ∞

e′cr(z)
|M exp[e′(z),m′]

−M [e′(z),m′]|d[e′(z)] (31)

The dynamic deviation parameters of the special mas-
ter curvesI (x′,m′) andK (y′,m′) are obtained, ifz is
replaced byzin or z̄ in Equations 28–31.

Fi M 1′[e′(zin)]

=
∫ e′cr(zin)

0
{1− M [e′(zin),m′]}d[e′(zin)]

=
∫ x′cr

0
[1− I (x′,m′)] dx′ (32)

Fi M 2′[e′(zin)]

=
∫ ∞

e′cr(zin)
{M [e′(zin),m′]}d[e′(zin)]

=
∫ ∞

x′cr

I (x′,m′) dx′ (33)
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F exp 1M ′[e′(zin)] =
∫ e′cr(zin)

0
|M exp[e′(zin),m′]

−M [e′(zin),m′]|d[e′(zin)]

=
∫ x′cr

0
|I exp(x′,m′)− I (x′,m′)|dx′ (34)

F exp 2M ′[e′(zin)] =
∫ ∞

e′cr(zin)
|M exp[e′(zin),m′]

−M [e′(zin),m′]|d[e′(zin)]

=
∫ ∞

x′cr

|I exp(x′,m′)− I (x′,m′)|dx′ (35)

Fi M 1′[e′(z̄)] =
∫ e′cr(z̄)

0
{1− M [e′(z̄),m′]}d[e′(z̄)]

=
∫ y′cr

0
[1− K (y′,m′)] dy′ (36)

Fi M 2′[e′(z̄)] =
∫ ∞

e′cr(z̄)
{M [e′(z̄),m′]}d[e′(z̄)]

=
∫ ∞

y′cr

K (y′,m′) dy′ (37)

F exp 1M ′[e′(z̄)]

=
∫ e′cr(z̄)

0
|M exp[e′(z̄),m′]−M [e′(z̄),m′]|d[e′(z̄)]

=
∫ y′cr

0
|K exp(y′,m′)− K (y′,m′)|dy′ (38)

F exp 2M ′[e′(z̄)]

=
∫ ∞

e′cr(z̄)
|M exp[e′(z̄),m′] − M [e′(z̄),m′]|d[e′(z̄)]

=
∫ ∞

y′cr

|K exp(y′,m′)− K (y′,m′)|dy′ (39)

5. Discussion and conclusions
According to the DQEA, an indirect correspondence
exists between the dynamic maximum impact line-
force Pmax and the quasi-static applied failure stressσ ,
i.e. high applied failure stresses in quasi-static tests cor-
respond to low maximum impact line-forces in dynamic
tests. This fact is the consequence of the quasi-static
Weibull modulimbeing positive, as well as the dynamic

Weibull modulim′, which always exhibit negative val-
ues. The interpretation of the dynamic deviation param-
eters with respect to the CCM will mainly be performed
for the general type of dynamic Weibull master curves
M [e′(z),m′] of ferritic-martensitic steels in part 4 of
this series of papers. Nevertheless, the evaluated con-
sequences will also be true for the two other types of dy-
namic Weibull master curvesI (x′,m′) and K (y′,m′),
since they represent special cases ofM [e′(z),m′] being
displayed in specific notations.

The dynamic Weibull master curvesI (x′,m′) and
I exp(x′,m′), as well as the dynamic deviation parame-
tersFi M 1′[e′(zin)], Fi M 2′[e′(zin)], F exp 1M ′[e′(zin)],
F exp 2M ′[e′(zin)] and dχI , are the most convenient
means for the evaluation of Charpy impact tests;
for these Weibull master curves show a favorable
value-distribution in the relevantm′-range according
to Equations 26–27, and they can be obtained for
all the possible dynamic Weibull modulim′<0.
Moreover, they are related to a scaling factor, which is
experimentally highly relevant being the most probable
maximum impact line-forcePmax in. Finally, K (y′,m′),
K exp(y′,m′), M [e′(z),m′] and M exp[e′(z),m′] can
usually be calculated fromI (x′,m′) and I exp(x′,m′)
by using the transformation equations given in part 1
of this series of papers [4] being valid for experimental
as well as theoretical quasi-static and dynamic Weibull
master curves.
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